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Abstract—A system is studied such that this system belongs to the class of dynamical systems
called the Buslaev nets. This class has been developed for the purpose of creating traffic models
on network structures such that, for these models, analytical results can be obtained. There
may be other network applications of Buslaev nets. The considered system is called an open
chain of contours. Segments called clusters move along circumferences (contours) according
to prescribed rules. For each contour (except the leftmost and rightmost contours) there are
two adjacent contours. Each of the leftmost and rightmost contours has one adjacent contour.
There is a common point (node) for any two adjacent contours. Results have been obtained
on the average velocity of cluster movement, taking into account delays during the passage
through nodes. These results generalize the results obtained previously for a particular case of
the system under consideration.
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1. INTRODUCTION

A class of mathematical traffic models consists of models in which particles move in a one-
dimensional or two-dimensional lattice. These models can be interpreted as cellular automata [1]
or exclusion processes [2]. In [3], the Nagel-Schreckenberg traffic model has been introduced. This
model were studied by a number of authors. In this model, an infinite or closed lattice is a sequence
of cells, and particles move along the lattice according to prescribed rules. Analytical results for
simple versions of models of this class have been obtained, e.g., in [4–10]. Models with network
structures, belonging to this class of models, were studied mainly by simulation.

The paper [7] (a preprint of this paper was published in 1999), the movement of particles along
closed lattice is considered. It is assumed that, at each step, each particle moves onto one cell
forward if the cell ahead is vacant, and the particle does not move if this cell is occupied. Suppose
a cellular automaton corresponds to the system. If a cell of the automaton is in the state 1, then the
cell corresponds to an occupied cell of the system, and, if a cell of the automaton is in the state 0,
then the cell corresponds to a vacant cell. As it noted in [7], this automaton is the elementary
cellular automaton 184 in terms of S Wolfram classification [1]. According to the results obtained
in [7], if the ratio of the number of particles to the number of cells (particle density) does not
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exceed 1/2, then, for any initial state, from a certain point in time, all particles move at each
moment without delays (free movement, self-organization). If the density is greater than 1/2,
then the average velocity of particles (the ratio of average number of moving particles per a time
unit) is equal to (1− ρ)/ρ where ρ is the density. Analogous results were obtained independently
in [5], where moreover an upper bound for the time it takes for the system to reach limit mode.
In [6], analytical results were obtained for more general model. In this model, with prescribed
probability, a particle moves from the cell i to the cell i+ 1 provided that the cell i+ 1 is vacant.
This probability depends on the states of cells i− 1 and i+ 2 (cells are numbered in the direction
of movement). The behavior of the system was studied in [6] for particular cases. In [8], a formula
has been obtained for the average velocity of particles in the stochastic traffic model such that,
in this model, at any step, with prescribed probability, each particle moves onto one cell forward
if the cell ahead is vacant. Some generalisations of results found in [5, 7, 8] were obtained in [9]
where a dynamical system with continuous state space was studied. In particular cases, this system
is equivalent to systems considered in [5, 7, 8]. In [10], a stochastic traffic model is studied. In
this model, particles move along a not closed lattice containing a finite number of cells. Particles
appear at one end of the lattice and move in the direction to the opposite end. After reaching this
end, the particles leave the lattice. In [10], a matrix approach has been developed to analyze the
system.

In [11], a two-dimensional traffic model was proposed (the Biham–Middleton–Levine model,
BML model). In this model, particles move along two-dimensional lattice in orthogonal directions.
Particles of the first type move along rows, and particles of the second type move along columns.
The rule of particle movement is a two-dimensional counterpart of the elementary automaton 184.
This analogy is noted in [11]. In [11–18], different versions of BML model was considered, and
analytical results have obtained mainly regarding conditions for self-organization and conditions
for jam).

In [19], a graph with a variable configuration of particles has been introduced. The developed
approach makes it possible to simulate phenomena that arise in complex networks (for example, in
transport and social network).

The book [20] is a monograph on mathematical modeling of traffic flows. Based on the material
presented in the book, one can see that quite few approaches are known to analytical study of traffic
flows with network structure. This determines that it is relevant to develop new such approaches.
One of these approaches is the development of models based on Buslaev nets.

In [21], the concept of cluster movement in transport models was introduced. In discrete version,
clusters are groups of particles located in adjacent cells and moving simultaneously. In this case,
the movement of particles corresponds to the rule of an elementary cellular automaton 240. In the
continuous version, clusters are moving segments and are called clusters by analogy with a discrete
version.

A.P. Buslaev has developed a class of dynamical systems, which now are called Buslaev nets [22].
A Buslaev net is a dynamic system containing a system of contours. Adjacent contours have
common points, called nodes. In the discrete version, a contour is a closed sequence of particles.
In the continuous version, the contour is represented as a circumference. Segments called clusters
move along contours according to prescribed rules. As particles pass through nodes, delays occur
due to the fact that more than one particle cannot pass through a node at the same time. The main
problems in study of Buslaev nets are to find the average velocity of particles (clusters), conditions
for the system to enter a state of free movement (starting from a certain moment, all clusters
move without delay at the current moment and in the future) or collapse (from a certain moment
no particle moves). Analytical results have been obtained for two-contour nets with one [23] or
two [24] common nodes and Buslaev nets with regular periodic structures [25–30].
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In [26], a Buslaev net called an open chain of contours is considered. In [26], a version of open
chain is studied such that this net is an open chain with continuous time scale. There is a common
point (node) for a contour and each adjacent contour except for the leftmost and rightmost contours.
Each of two later contours have one adjacent contour. There is a common node for two adjacent
contours. In each contour, there is a cluster. The length of each contour is the same. Each contour
is divided by two nodes into parts of the same length. It has been proved that if the length of
cluster is not greater than half the length of the contour, then the system from a certain moment
is in a state free movement, i.e., all clusters move without delay, and if the cluster length is greater
than half contour length, then all clusters move with the same average velocity, which is less than
the velocity of free movement and independent of the initial state of the system. A formula for the
average velocity of clusters was obtained. In [27], the average velocity of clusters has been obtained
for a version of open chain with discrete state space and discrete time provided that the length of
each contour is the same (the same number of cells in contour) and each contour is divided by nodes
into two parts of the same length. Examples are given showing that, in the general case, clusters
can move with unequal average velocities, and the average velocity can depend on the initial state
of the system. In [30], the limit distribution (invariant measure) has been found for an open chain
with contours of the same length and clusters of unequal length.

In [23], an asymmetrical two-contour system with one node was considered. This system is a
particular case of a heterogeneous open chain of contours, for which the number of contours is equal
to two. The following example of a possible application of the results on contour networks is given.
Let, during the working day, raw materials or fuel are constantly delivered to two departments of
the enterprise from the warehouse. The cargo is delivered by vehicles such as trucks along narrow-
gauge tracks. The warehouse is located at the intersection of these paths. A vehicle that arrives to
a warehouse while another vehicle is loading waits for service to complete and then begins loading.
Suppose that the ith vehicle travels from the warehouse to the department and back in time ci − li,
taking into account the unloading time in the department, and loading time for the vehicle at the
warehouse lasts li units of time, i = 1, 2. Then the process of vehicles movement is modeled by a
system of the type under consideration with contour lengths equal to c1 and c2 and cluster lengths
equal to l1 and l2, respectively, under the assumption that, in the absence of delays, each cluster
moves at unit velocity.

This example can be generalized. Let us assume that there are three departments of the en-
terprise, two warehouses and three vehicles, each of which delivers cargo to the department to
which the vehicle is related. Cargo is delivered to the department 1 from the warehouse 1. Cargo
is delivered to the department 3 from the warehouse 2. Cargo is delivered to the department 2
alternately from both warehouses. The transport work process may be modeled by a heterogeneous
three-contour open chain of contours. Each contour corresponds to a vehicle path. Each of the two
nodes corresponds to one of the warehouses.

In this paper, we prove a theorem regarding the behavior of the system in the case when the
length of the contour and the length of moving cluster depend on the contour number, and contours
can be divided by the nodes into parts of unequal lengths. It is assumed that the clusters have
sufficiently large lengths. The formula is obtained for the cluster velocity. This formula is a
generalization of the formula obtained in the paper [27] for the particular case considered in that
paper.

2. DESCRIPTION OF SYSTEM

Suppose a dynamical system, Fig. 1. The system contains N circumferences called contours.
The length of the cluster i is equal to ci, i = 1, . . . , N . The coordinate system [0, ci) is given for
the contour i, i = 1, . . . , N. There is a common point of the nodes i and i+ 1 called the node
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C1 C2 C3 C4 C5

Fig. 1. An open chain of contours, N = 5, ci is the length of the contour i, li is the length of the cluster i,
i = 1, . . . , 5.

C1 C3
C2

Fig. 2. The cluster 2 occupies the node (1, 2), l2 + d2 < c2. A delay of the cluster 1 at the node (1,2).

C1 C3C2

Fig. 3. The cluster 2 occupies the node (1, 2), l2 + d2 > c2. A delay of the cluster 1 at the node (1,2).

C1 C3
C2

Fig. 4. A competition of the clusters 2 and 3.

(i, i + 1), i = 1, . . . , N − 1. For the contour i, the coordinate of the node (i, i+ 1) is equal to 0,
and, for the contour i+1, the coordinate of the node (i, i+ 1) is equal to di+1 > 0, i = 1, . . . , N − 2.
Suppose the coordinate of the node (N − 1, N) is equal to 0 in both the contour N − 1 and the
contour N. There is a moving segment of the length li, i = 1, . . . , N. The segment is called a
cluster. The direction of the coordinate axis i is the same as the direction of the cluster movement,
i = 1, . . . , N. If delays of a cluster do not occur, then the cluster moves with velocity 1, i.e., the
cluster i makes a full revolution in ci units of time, i = 1, . . . , N. If, at time t ≥ 0, the coordinate i
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is equal to xi(t), then the cluster i is located on the arc (xi(t)− li, xi(t)) (subtraction modulo ci),
i = 1, . . . , N. The state of the system at time t is the vector x(t) = (x1(t), . . . , xN (t)), where xi(t) is
the coordinate of the leading point of the cluster i, i = 1, . . . , N. We say that, at time t, the cluster i
occupies the node (i, i + 1) if 0 < xi(t) < li, i = 1, . . . , N − 1. We say that, at time t, the cluster i
occupies the node (i− 1, i) if di < xi(t) < di + li (for di + li < ci), Fig. 2, or 0 ≤ xi(t) < di + li − ci
(for di + li ≥ ci), Fig. 3, i = 2, . . . , N − 1, Fig. 4, 0 < xi(t) < li, i = N. We say that, at time t, the
cluster i is at the node (i, i + 1) if xi(t) = 0, i = 1, . . . , N − 1. We say that, at time t, the cluster i is
at the node (i− 1, i) if xi(t) = di, i = 2, . . . , N − 1; xN (t) = 0. The state is admissible if no node is
occupied by two clusters. The system state at time t = 0 (the initial state) prescribed and must be
admissible. A delay of cluster is at a node such that, at the moment, this node is occupied by the
cluster of adjacent contour. The delay ends when this node stops being busy. If clusters i and i+ 1
are simultaneously located at node (i, i+ 1), then competition between these clusters occurs (Fig. 4)
and the cluster passes through the node first, chosen in accordance with deterministic or stochastic
competition resolution rule. If the conditions of Theorem 1, which is proved in Section 4, hold,
then, for any competition resolution rule, and the cycle is implemented such that no competitions
occur, and the cycle is independent of the initial state.

3. LIMIT CYCLES. THE AVERAGE VELOCITY

The system is deterministic, and its behavior in the future is determined by its state at present.
Therefore, if at some moment a state is repeated, then from the moment the states of the system
will be periodically repeated, forming a cycle (limit cycle).

Let Hi(t) be a total distance traveled by the cluster i in the time interval (0, t). Then, if there
exists the limit

vi = lim
t→∞

Hi(t)

t
,

then this limit is called the average velocity of the cluster i, i = 1, . . . , N. It is obvious that, if a
cycle is implemented, then this limit exists, and the limit equals the ratio of the distance traveled
by the cluster during the cycle to the period.

4. BEHAVIOR OF THE SYSTEM

In Section 4, statements about the behavior of the system are proved.

Lemma 1. If

li
ci

+
li+1

ci+1
> 1 (1)

i and i+ 1 (1 ≤ i ≤ N − 1), then the average velocity of at least one of the clusters i and i+ 1 is
less than 1.

Proof. Suppose there exists i such that vi = vi+1 = 1, and therefore the clusters i and i+ 1
(1 ≤ i ≤ N − 1) move without delays. Then the first term in the left side of the inequality (1) is
the limit of the ratio of the total time in the interval (0, t) during that the node (i, i+ 1) is occupied
by the cluster i to t as t → ∞, and the second term is the limit of the ratio of the total time in
the interval (0, t) during that the node (i, i + 1) is occupied by the cluster i + 1 to t as t → ∞.
Therefore the sum of these terms is not greater than 1 since the node cannot be occupied by two
clusters simultaneously. The contradiction proves Lemma 1.

The following theorem characterizes the behavior of the system for sufficiently large cluster
lengths (heavy load).
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Theorem 1. Suppose the following conditions hold

li > max(di, ci − di), i = 2, . . . , N − 1, (2)

l1 + li > ci, i = 2, . . . , N, (3)

li + lN > ci, i = 1, . . . , N − 1, (4)

and at least one of two conditions holds

l1
c1

+
l2
c2

> 1, (5)

lN−1

cN−1
+

lN
cN

> 1. (6)

Then, for any deterministic or stochastic competition resolution rule, the same limit cycle is im-
plemented, in which no competitions occur. The period of the cycle is equal to

T = l1 + lN + 2
N−1∑
j=2

lj −
N−1∑
j=2

cj . (7)

The average velocity of the cluster i equals

vi =
ci

l1 + lN + 2
N−1∑
j=2

lj −
N−1∑
i=2

ci

, i = 1, . . . , N. (8)

Proof. Suppose the conditions (2)–(5) hold. According to Lemma 1, a delay of at least one of
the clusters 1 and 2 occur.

Suppose, at time t1, a delay of the cluster 2 begins at the node (1, 2). Then we have
0 < x1(t1) < l1, and the movement of cluster 2 resumes at time t0 = t1 + l1 − x1(t1), and

x1(t0) = l1, x2(t0) = d2. (9)

Suppose, at time t1, a delay of the cluster 1 at the node (1, 2). If, at time t2 > t1, this delay ends,
then x1(t2) = 0, x2(t2) = d2 + l2 − c2. For t3 = t2 + c2 − l2, we have x2(t3) = d2. According to (3),
we have c2 − l2 < l1. Therefore, at time t2, the cluster 1 occupies the node (1, 2), and a delay of
the cluster 2 begins at the node (1, 2). Let us make sure that the delay of the cluster 1, starting at
time t1, will end. If the delay of the cluster 1 never ends, then, from time t, the cluster 1 is at the
node (1, 2). We can prove by induction that, for 2 ≤ i ≤ N − 1, from some moment, the cluster i is,
at the node (i, i + 1) at present and in the future. There exists t such that, at time t, the system is
in the state such that xN−1(t) = 0, xN (t) = lN − cN

2 . After this moment, the cluster N − 1 begins
to move. Hence there exists a moment such that the movement of a cluster is resumed. Let t4 be
the minimum value t4 > t0 such that, at time t4, the movement of the cluster 1 ≤ i0 ≤ N − 1 is
resumed, and the clusters 1, 2, . . . , i0 − 1 do not move. Then, at time

t4 +
i0−j−1∑
k=0

(di0−k + li0−j − ci0−k),

the movement of the cluster j = 1, . . . , i0 − 1 is resumed. In particular, the movement of the
cluster 1 is resumed.

Thus, there exists t0 such that (9) holds.

AUTOMATION AND REMOTE CONTROL Vol. 84 No. 9 2023



1100 BUGAEV et al.

At time t0 − l1, the cluster 2 was at the node (1, 2), and, from this time, the cluster occupied
this node. If (2) holds, then at least each of the clusters i = 2, . . . , N − 1 occupies at least one
node. Hence, at time t0 − l1, the cluster 2 occupies the node (2, 3). At time t0 − l1, each of the
clusters i = 2, . . . , N − 1 occupies the node (i, i+ 1). The proof is by induction. Therefore,

di + li − ci � xi(t0) � di, i = 3, . . . , N − 1. (10)

Combining (2), (3), (9), (10), we get that, at time t0, the system is in the state

x(t0) = (l1, d2, . . . , dN−1, 0).

At time t0, the movement of the cluster 2 begins and the movement of the cluster 1 continues.
The movement of the cluster i is resumed at time

t(i) = t0 +
i−1∑
j=2

(lj − dj), i = 3, . . . , N.

The cluster this cluster finds the node occupied and waits for it to become free. According to (2),
(4), each of the clusters i = 1, . . . , N , approaching the node (i, i + 1), waits for its release. At time
u0 + a

a = lN +
N−1∑
j=2

(lj − dj), (11)

the system is in the state
x(t0 + a) = (0, . . . , 0, lN ).

The movement of the cluster i is resumed at time

u(i) = t0 + a+
N−1∑
j=i+1

(dj + lj − cj), i = 2, . . . , N − 1.

According (2), (3), at time

u(1) = t0 +
N−1∑
i=2

(di + li − ci),

the movement of the cluster 1 is resumed at time u0 = t0 + a+ b, the system enters the state

x(u0) = x(t0 + a+ b) = (l1, d2, . . . , dN−1, 0) = u(t0), (12)

b = l1 +
N−1∑
i=2

(di + li − ci). (13)

Combining (11), (13), we obtain

a+ b = l1 + lN + 2
N−1∑
j=2

li −
N−1∑
i=2

ci. (14)

Therefore a cycle with period a+ b is implemented. During the cycle, there is no competition
between clusters simultaneously located at the same node. Each cluster makes one revolution
during the cycle. Using (14), we obtain the theorem under the conditions (2)–(5).

The proof does not take into account the competition resolution rule. Therefore, due to sym-
metry, condition (5) should be replaced by condition (6). The theorem has been proved.
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Corollary 1. Under the conditions of the theorem, the period (7) of the implemented cycle and
the average velocities (8) of the clusters do not depend on d2, . . . , dN−1.

The statement follows from Theorem 1.

Suppose

c1 = · · · = cN = 1, d2 = · · · = dN−1 =
1

2
, (15)

li >
1

2
, i = 1, . . . , N,

i.e., the length of each contours is the same(without loss of generality, we assume that this length
equals 1), the nodes divide the contour into two equal parts, and the length of each cluster is greater
than half the length of the contour. If (15) holds, then (7), (8) has form [21]

T = l1 + lN + 2
N−1∑
i=2

li −N + 2, (16)

vi =
1

l1 + lN + 2
N−1∑
i=2

li −N + 2

, i = 1, . . . , N. (17)

Note that, in this case, the average velocity of any cluster is the same. In [22], it has been shown
by examples that, for a discrete open chain with the contours of the same length and the clusters
of different lengths, among which there can be clusters of lengths greater than half the length of
the contours, and clusters of lengths not greater than half the length of the contours the average
velocity can depend on the initial state, and the average velocities of clusters can be different for
the same initial state of the system. Let us give an example for the considered continuous chain.

Example 1. Suppose the conditions (15), N = 3, l1 = l3 = 0.75, l2 = 25 hold. Let (0.75, 0.5, 0.25)
be the initial state. Then any cluster comes to a node when the node is not occupied. Indeed,
we have x(0) = (0.75, 0.5, 0.75), x(0, 5) = (0.25, 0, 0.25), x(1) = (0.75, 0.5, 0.75) = x(0). Hence the
initial state belongs to the cycle with the velocity 1. If the initial state is (0.25, 0.5, 0.75), then we
have x(0) = (0.25, 0.5, 0.75), x(0.5) = (0.75, 0.5, 0.25), x(1) = (0.25, 0, 0.75), x(1.5) = (0.75, 0, 0.25),
x(2) = (0.25, 0.5, 0.75) = x(0). Hence, during the cycle with period 2, the clusters 1 and 3 move
without delays and make two revolutions, and the cluster 2 makes only one revolution. Therefore,
v1 = 1, v2 = 1/2, v3 = 1. Hence, there exists an initial state such that the velocity of any cluster
is equal to 1, and there exists an initial state such that the velocity of the clusters 1 and 3 is equal
to 1, and the average velocity of the cluster 2 is equal to 1/2.

If the conditions (15) and l1 = · · · = ln = l > 1/2 hold, then (16), (17) have the form [18]

T = 2(N − 1)l −N + 2,

vi =
1

2(N − 1)l −N + 2
, i = 1, . . . , N.

Under the conditions (15) and l1 = · · · = lN = l ≤ 1/2, it has been proved in [19] that the system
results in the state of free movement from any initial state.

Thus, for an open chain with contours of the same length and clusters of the same length, the
average velocity is the same for all clusters and does not depend on the initial state of the system
in contrast to a closed chain with contours of equal length and clusters of different lengths [27],
for which the average velocity of clusters depends on the initial state. In [23], the limit state
distribution (invariant measure) for an open chain with contours of the same length and clusters
with the same length under the condition l > 1/2 has been found.
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5. CONCLUSION

A theorem has been proved about the behavior of a dynamical system called an open chain of
contours. The system belongs to the class of Buslaev nets. Previously, the system was considered
under the assumption that all contours have the same length and the nodes divide the contours
into parts of the same length. In this paper, it is supposed that the lengths of the contours may
be different. Each contour can be divided into parts of different lengths. The system is considered
under the assumption that clusters located in the contours have sufficiently large lengths. It has
been proved that under the considered assumptions the limit cycle of the system is unique. The
average cluster velocities and the period of the limit cycle are found. The results of the work can
be used in traffic modeling, and also have other applications, in particular, in infocommunication
systems modeling.
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